
IndexFinder: A Method of Extracting Key Concepts from Clinical Texts for Indexing

Qinghua Zou, MSc1, Wesley W. Chu, PhD1, Craig Morioka, PhD3, Gregory H. Leazer, PhD2, and
Hooshang Kangarloo, MD3

1Dept of Computer Science, University of California, Los Angeles
2 Dept of Information Studies, University of California, Los Angeles

3Dept of Radiological Sciences, University of California, Los Angeles

Extracting key concepts from clinical texts for indexing is
an important task in implementing a medical digital
library. Several methods are proposed for mapping free
text into standard terms defined by the Unified Medical
Language System (UMLS). For example, natural language
processing techniques are used to map identified noun
phrases into concepts. They are, however, not appropriate
for real time applications. Therefore, in this paper, we
present a new algorithm for generating all valid UMLS
concepts by permuting the set of words in the input text
and then filtering out the irrelevant concepts via syntactic
and semantic filtering. We have implemented the algorithm
as a web-based service that provides a search interface for
researchers and computer programs. Our preliminary
experiment shows that the algorithm is effective at
discovering relevant UMLS concepts while achieving a
throughput of 43K bytes of text per second. The tool can
extract key concepts from clinical texts for indexing.

INTRODUCTION
The Unified Medical Language System (UMLS) is a
collection of over 100 medical knowledge sources [1]. The
most recent edition of UMLS (2003AA ed.) contains
875,255 concepts and 2.14 million phrases [5] with lengths
ranging from 1 to 100 words, and an average of 4.5 words.
Our goal is to develop a method to extract relevant UMLS
concepts in real time from clinical texts for indexing.

A significant amount of research has aimed at developing
effective methods for mapping free text into UMLS
concepts. Examples of such efforts include SENSE [1],
MicroMeSH [6], Metaphrase [7], KnowledgeMap [4],
PhraseX [2], MetaMap [3]. Many of these efforts use
natural language processing (NLP) techniques to parse
passages of free text to generate noun phrases, which in
turn are mapped into UMLS phrases. This approach
achieves some success. They are, however, some
shortcomings to this general technique:

First, some important concepts can not be discovered
through the identification of noun phrases. Table 1
provides examples of texts that reveal the shortcomings of
the use of noun phrases.

• Example 1: A word from the heading phrase with
a word from the description phrase forms the key
concept, prostate hyperplasia (C0033577).

• Example 2: A word from the subject and two
words from the location phrase combine to form
the key concept, left lung mass (C0746117).

• Example 3: Words from two sentences combine,
forming the key concept, left lung mass
(C0746117).

Secondly, NLP requires significant computing resources
and usually works in an offline mode. Therefore, NLP
methods are not generally suitable for a real time web tool
that requires mapping a large volume of free text into
UMLS concepts.

In this paper, we propose a novel approach to discover
candidate phrases in a sentence or other text unit and then
use syntactic and semantic filters specified by the user to
filter out irrelevant conceptual terms. The approach avoids
using the expensive NLP process. An empirical analysis
shows that our algorithm can process text at a throughput
of 43K bytes text per second, which is much faster than
NLP-based approaches like MetaMap. Our system can
extract conceptual terms from clinical texts and group
them by their corresponding semantic types, which can be
used for indexing in medical digital libraries.

BACKGROUND

Mapping of UMLS Concepts We first postulate UMLS
concepts in the form shown in
table 2, which can be calculated
from UMLS normalized string
table MRXNS.ENG. Here, each
row contains a phrase that is
given as a set of words where
the ordering is overlooked. For
any text of m distinct words,
e.g. T={A,B,C,D}, the mapping
problem is to find all the
phrases in the table that are
subsets of the text T.

pno Set of
words

#word concept

1 A 1 C1
2 B 1 C2
3 A, B 2 C3
4 C 1 C4
5 B, C, D 3 C5
6 A, D, E 3 C6
7 E, D 2 C7
8 A, C 2 C8
Table 2. Phrase table

1 Prostate, right (biopsy)
 - fibromuscular and glandular hyperplasia

2 A small mass was found in the left hilum of the lung.

3 A large mass was identified. It is in the left side of the lung.

Table 1. Example texts to illustrate problems of mapping
individual noun phrase to concepts.

For the text example T, for example, the satisfied phrases
are {A}, {B}, {A,B}, {C}, {B,C,D}, and {A,C}. The two
phrases {A,D,E} and {E,D} are not considered relevant
since E is not in T.
Computation Complexity Since UMLS has 2.14 million
phrases, Table 2 will contain 2.14 million rows. For a text
that contains m distinct words, the mapping problem may
be solved in two naïve ways:
First approach: For each of the 2m-1 non empty subsets of
the text, s, we determine whether s is a phrase in the phrase
table. Let the average time for the testing of whether s is
contained in the table be a, then this approach has an
average time complexity of O(a2m). When m>20, this
approach requires millions of comparisons.
Second approach: For each phrase of the N rows (2.14M)
in the table, we determine whether the phrase is a subset of
the text. Supposing the average time for testing whether a
phrase in the table is contained in the text equals constant
b, then the average time complexity will be O(bN) which is
also very high time complexity.
Therefore both naïve approaches are not appropriate for
designing a real time web application. In the following
sections, we propose an efficient mapping algorithm that is
significantly faster than the above approaches.

METHODS
In this section, we first present text preprocessing. We then
demonstrate the basic idea of generating concept
candidates by permuting the set of words in the input text.
Finally, we present several syntactic and semantic filters to
remove the irrelevant conceptual terms introduced during
the generation of phrase candidates.

Text Preprocessing

Our index uses the UMLS normalized string table which
only supports certain types of abbreviations. Therefore we
need to preprocess the input text to normalize words [3],
detect undefined and ambiguous abbreviations as well as
remove stop words to increase the accuracy of the
extraction.

We use two data structures
to store special word
inflections as shown in
Figure 1. Hash table
specialHt maps a special
word to a base. For
example, children maps to
child by bid=0; arose and
arisen map to arise.

When a word has no entry in
wordHt in line 3 of Figure 3, normalization starts. It
follows these two steps: 1) If removing regular inflection,
the word has an entry in wordHt, then returns the entry;

otherwise, it continues to step 2. 2) If the word has an
entry in specialHt, then return the corresponding base
word; otherwise, the word is overlooked.

The Mapping Algorithm

Data structures The Phrase table in Table 2 can be sorted
according to the increasing number of words, as in Figure
2(a). We can then use it to populate the four indexing data
structures as shown in Figure 2(b-e).

• wordHt: a hash table mapping a word to a unique
identifier wid, as in Figure 2(b). In the UMLS
2003AA, there are 431,200 distinct words.
Suppose that the average characters per word are
10, and wid is a 4 byte integer. The total size for
the wordHt is about 6Mega bytes.

• wid2pids: an array mapping wid to a list of phrase
identifiers pids. It is an inverted index indicating
the phrase list where a word occurs, as in Figure
2(c). The average number of phrases per word in
the table is 21.3. Therefore the data size for this
table is 431200*21.3*4=36.7M.

• cuis: an array that maps pid to UMLS cui, as
shown in Figure 2(d). Since the total number of
phrases in UMLS is 2.14M, this array size is
2.14M* 4= 8.6M bytes.

• pLen: an array indicating the upper bound for a
given phrase length, as in Figure 2(e). For
example, the pid for phrases of length 1 will be
less than 3. Using this table, we are able to
determine the length for each pid. This
information is used in the mapping algorithm to
determine if the input words contain the complete
phrase. Since the maximal phrase length is 100,
the memory size for this array is about 400 bytes.

Since the total memory for the above four data sets is less
than 50M bytes, they can reside in the main memory.
Phrase searching reduces to a counting process Given
the above indexing data structures, mapping a text T into
concepts becomes a simple counting process, as shown in
Figure 3. It first adds each word into its occurring phrase’s
queues, then we output those phrases that reach the expect
number of words. More specifically, at Line 1, the text T
is tokenized into a list of words, which are transformed
into lowercase. Repeating words are dropped, as in Line 2.

pid words # cui
0 A 1 C1
1 B 1 C2
2 C 1 C4
3 A, B 2 C3
4 A, C 2 C8
5 E, D 2 C7
6 B, C, D 3 C5
7 A, D, E 3 C6

a. Phrase table

pid cui
0 C1
1 C2
2 C4
3 C3
4 C8
5 C7
6 C5
7 C6

d. cuis

word����wid
A� 0
B� 1
C� 2
D� 3
E� 4

b. wordHt

wid pids
0 0, 3, 4, 7
1 1, 3, 6
2 2, 4, 6
3 5, 6, 7
4 5, 7

c.wid2pids

len upPid
0 0
1 3
2 6
3 8

e. pLen

Figure 2. Indexing structures for matching text to
UMLS concepts

bid base
0 child
1 woman
2 man
3 bring
4 arise

…
(b) base

word ����bid
children � 0
women � 1
men � 2
brought � 3
arose � 4
arisen � 4
…

(a) specialHt
Figure 1. Data structure for

removing inflection.

The unique words in wl are mapped into wids through the
hash table wordHt, as in Line 3. At Lines 4 and 5, we use
hash table countHt to collect information for phrases and
their word lists. If the number of words for a phrase is less
than the expected length, some word of the phrase is
absent, and the phrase will be removed, as in Line 6.
Finally at Line 7, phrase identities are mapped into
concepts, and output the results.

For example, Figure 4 shows the counting process for the
input text T={A,B,C,D}. In Figure 4(b), a word is mapped
into wid and pids. For instance, word A has wid=0 and
pids={0,3,4,7} meaning that A occurs in four phrases. We
then add A to the four pid word lists in hash table countHt,
as in Figure 4(a). Figure 4(a) shows the results after
processing all the words in T. Then pid 5 and 7 are
removed since their lengths are 1 and 2 less than the
expected lengths 2 and 3, respectively.

For an input text of m distinct words, since the average
length of the phrase list of a word is 21.3, we need to
perform 21.3*m operations at Line 4-5 in Figure 3.
Therefore the average time complexity will be O(21.3m)
which is significantly lower than the complexity of the
naive approaches.

Adding Synonyms

Synonym mapping is useful
since people do not usually
know the exact terminologies
if they are not in the field. For
example, a patient query may
consist of no medical terms
unless synonyms are
considered. We put words
into a synonym group if they
are synonym in UMLS [8] or share a common concept.
Two data structures synHt and gid2wids are used for
adding synonyms, as shown in Figure 5. The table synHt
maps a word to a synonym group. For example, the words
eye, optic, and oclar are synonyms since they have the
same group identifier 0. The gid2wids is an array that
maps a synonym group to its member words. Given synHt
and gid2wids, it is easy to find the list of synonyms for a
given word.

Filtering
Since applications usually have a certain focus, filtering
out the results that people are not interested in is very
useful. For example, a doctor wants to know what kind of
diseases a patient suffers. Rather than returning all
concepts to the doctor, several disease-related UMLS
phrases are much more desirable. We consider six types of
filters as shown in Figure 6.

The first three filters are applied during the mapping
process. They are:

• Symbol Type filter: to specify the symbol types of
interests. For example, if a user wants to ignore
digits like MetaMap did, he can simply not check
the Digits box as in Figure 6.

• Term Length filter: to specify the length
limitation of candidate phrases.

• Coverage filter: to specify the coverage condition
for a candidate phrase. It has three options, at
least one, majority, and all. By default, it is all
where every word in a candidate phrase should be
present in the input text.

The latter three filters are used for further pruning the
candidate phrases.

• Subset filter: to remove phrases if they are subsets
of some other phrases. For example, if results are
{lung cancer} and {cancer}, then {cancer} will
be removed since it is a subset of the former.

• Range filter: to remove a phrase if the phrase is
found from words in the input text to exceed a
specific distance.

• Semantic filter: to remove the phrases of semantic
types that the user is not interested in. In UMLS,
134 semantic types are defined and each concept
maps to one or several semantic types. For
example, the user can select Disease or Syndrome
and its two sub types, as shown in Figure 6, so

word: wid: pids
A: 0: 0, 3, 4, 7
 B: 1: 1, 3, 6
 C: 2: 2, 4, 6
 D: 3: 5, 6, 7
(b) pids

pid����words
0 ���� {A}
1 ���� {B}
2 ���� {C}
3 ���� {A, B}
4 ���� {A, C}
5 � {D}
6 ���� {B, C, D}
7 � {A, D}

(a) countHt
Figure 4. Counting the number of

words for each pid.

Hashing and
counting

//input: text T
//output: list of cui & phrase
1. list of words of T � wl
2. to low case & remove

repeating words in wl.
3. words in wl �wids
4. foreach wids, get pids
5. foreach pids, add countHt
6. remove if |words|<exp(pid)
7. replace pid to cui, output

Figure 3. The mapping
Algorithm.

gid wids
0 21,34,67

…
(b) gid2wids

word: wid����gid
eye: 21 � 0
optic:34 � 0
oclar: 67 � 0
…

(a) synHt
Figure 5. Data structure for

adding synonyms.

Figure 6. Configuration options.

that the resulting phrases will be of these three
types. As a result, the filter also eliminates those
irrelevant phrases from the set of phrase
candidates. Note that UMLS ISA relationship
may also be used to filter out more general
phrases.

RESULTS
We have implemented the algorithm as a web-based
service named IndexFinder that provides web interfaces
for users and programs at the following links respectively:

• http://fargo.cs.ucla.edu/umls/search.aspx
• http://fargo.cs.ucla.edu/umls/service.asmx

The IndexFinder, written in C#, is running on a 1.2GHz
PC machine with 512MB main memory. We tested the
web service using 5,783 reports of 128 patients from the
UCLA Hospital. The total size of the documents is 10,8M
bytes. The service processes a document a time without
filtering. There are 910K concepts found in 254 seconds.
Therefore, the throughput is about 42.7 K bytes per
second. Figure 7 shows the web interface for users. There
are two windows on the web page, one for input text and
the other for output results. Three buttons for adding
synonyms, removing inflection, and configuring options
are at the top of the input window. When a user clicks the
IFinder Search button below the input window, results will
show up. Figure 7 shows 18 phrases found when no filters
were applied. Each line has a UMLS concept identifier,
phrase text, and corresponding semantic type.

Filtering Figure 8 shows filtering result for the sample
input in Figure 7, also shown in the top of Figure 8. When
a subset filter is used, 8 phrases are returned. If Pathologic
Function is selected, four answers will be returned. The
two phrases prostate and focal will be given if the user
wants to know body parts or spatial characteristics. There
is only one diagnostic procedure used, which is prostate
biopsy.

Comparison with NLP approach We have performed
comparison study between IndexFinder and NLP method
MetaMap. We noticed that the NLP tend to break a
sentence into small fragments. Conversely, IndexFinder
considers all the possible combination of words in the
input unit as long as valid in UMLS. As a result, NLP does
not yield concepts as specific as IndexFinder as shown in
Figure 9.

We are currently in the process of evaluating the accuracy
of our method. We plan to generate a test dataset by
randomly selecting a set of topic sentences from the above
5,783 patient reports and then compare the accuracy of the
indexing terms generated by the IndexFinder in terms of
the numbers of false negatives and false positives [10].

APPLICATION
As a specific clinical application for this research, we have
focused on using the IndexFinder to intelligently filter all

Output window

Input window

Figure 7. IndexFinder web interface.

Figure 8. Result filtering.

Input: Prostate, right (biopsy)
 - fibromuscular and glandular hyperplasia
 - focal acute inflammation
 - no evidence of malignancy
Filtering Results
 Subset C0194804:biopsy prostate
 C0033577:prostate hyperplasia
 C0035621:right
 C0259776:hyperplasia fibromuscular
 C0334000:hyperplasia glandular
 C0522570:inflammation focal
 C0333361:inflammation acute
 C0391857:no malignancy evidence
 Pathologic Function C0033577:prostate hyperplasia
 (T046) C0259776:hyperplasia fibromuscular
 C0334000:hyperplasia glandular
 C0333361:inflammation acute
 Body parts & Spatial C0033572:prostate
 (T023, T082) C0205234:focal
 Diagnostic Procedure (T60) C0194804:biopsy prostate

Input: A small mass was found in the left hilum of the lung.
IndexFinder Results:
 C0024873:a mass >>T190:Anatomical Abnormality
 C0700321:small >>T080:Qualitative Concept
 C0746117:mass lung left >>T033:Finding
 C0332285:found >>T082:Spatial Concept
 C0225733:lung left hilum >>T029:Body Location or Region
MetaMap Results:
 Phrase: "A small mass"
 861 Mass, NOS [Anatomical Abnormality]
 694 Small [Qualitative Concept]
 Phrase: "was" Meta Mappings: <none>
 Phrase: "found" Meta Mappings: <none>
 Phrase: "in the left hilum"
 1000 Left hilum [Body Part, Organ, or Organ Component]
 Phrase: "of the lung"
 1000 Lung [Body Part, Organ, or Organ Component]
 1000 Lung <3> (Lung diseases) [Disease or Syndrome]

Figure 9. Comparing results generated by IndexFinder
and MetaMap.

clinical free-text in an electronic medical record for
documents that specifically mention brain tumor related
content. It is not uncommon for a brain tumor patient to
have as many as 50 clinical documents in their medical
record. Many of these documents will have nothing to do
with the treatment of the brain tumor, but are concerned
with other health problems. These documents consist of
primary care clinical notes, specialist clinical notes,
pathology reports, laboratory results, radiology reports,
and surgical notes. Figure 10 shows an excerpt from a
radiology report.

Since our interests focus on brain tumor related concepts,
we can specify a semantic filter worklist of pertinent
documents based on brain tumor characteristics including:
cancer type, anatomical location, and medical
interventions. These characteristics are then mapped to
relevant UMLS semantic types as shown in Table 3 to
define semantic filters.

Brain Tumor
Characteristics

Relevant
 UMLS semantic types

Specific Cancer Neoplastic Proccess
Medical Intervention Therapeutic Procedure
Anatomical location Body Part, Organ or Organ Component

Table 3. Using UMLS semantic type to define interests.

A clinician looking for specific documents that address a
certain type of brain tumor (i.e. meningioma) would have
to carefully search the individual documents. With
IndexFinder, only two key terms, meningioma and
encephalomalacia, are returned for the above text excerpt
as shown in Table 4. The two concepts, in fact, are
important in the excerpt and thus are good terms for
indexing.

Table 4. Output from IndexFinder for the text in Figure 9.

CONCLUSION
In this paper, we proposed a new efficient approach for
extracting the conceptual phrase candidates in clinical texts
and identifying important phrases for indexing. The
method uses a set of data structures to reduce the problem
of searching UMLS concepts to a simple counting process.
Input texts are preprocessed to perform word
normalization, detect abbreviations, and delete stop words

to improve accuracy of the mapping results. Syntactic and
semantic filters are used to eliminate the irrelevant
candidates. Our experiment shows that it can process free
text at a speed of about 43K bytes per second. As a result,
IndexFinder is able to extract key UMLS concepts from
clinical texts in real time. Preliminary manual evaluation
shows that the syntactic and semantic filters are effective
in filtering out irrelevant terms. Further, IndexFinder tends
to generate more specific concept terms than those of NLP
approaches. Thus, IndexFinder has high potential to be
used for indexing clinical texts for a medical digital
library.

ACKNOWLEDGEMENTS
This research is supported by NIC/NIH Grant #4442511-
33780.

REFERENCES
1. Yuri L. Zieman and Howard L. Bleich. Conceptual

Mapping of User’s Queries to Medical Subject
Headings. Proc AMIA 1997.

2. Suresh Srinivasan, Thomas C. Rindflesch, William T.
Hole, Alan R. Aronson, and James G. Mork. Finding
UMLS Metathesaurus Concepts in MEDLINE. Proc
AMIA 2002.

3. Alan R. Aronson, Effective Mapping of Biomedical Text
to the UMLS Metathesaurus: The MetaMap Program.
Proc AMIA 2001.

4. Joshua C. Denny, Jeffrey D. Smithers, Anderson
Spickard, III, Randolph A. Miller. A New Tool to
Identify Key Biomedical Concepts in Text Documents.
Proc AMIA 2002.

5. National Library of Medicine. Documentation, UMLS
Knowledge Sources, 14 th Edition, January 2003.

6. Elkin PL, Cimino JJ, Lowe HJ, Aronow DB, Payne TH,
Pincetl PS and Barnett GO. Mapping to MeSH: The art
of trapping MeSH equivalence from within narrative
text. Proc 12th SCAMC, 185-190, 1988.

7. Tuttle MS, Olson NE, Keck KD, Cole WG, Erlbaum
MS, Sherertz DD et al. Metaphrase: an aid to the clinical
conceptualization and formalization of patient problems
in healthcare enterprises. Methods Inf Med. 1998
Nov;37(4-5):373-83.

8. Hole W. T, Srinivasan S. Discovering Missed Synonymy
in a Large Concept-Oriented Metathesaurus. Proc AMIA
Symp 2000:354-358.

9. Morioka CA, El-Saden S, Duckwiler, G. et al, Workflow
Management of HIS/RIS Textual Documents with PACS
Image Studies for Neuroradiology, Proc AMIA Symp
2003.

10. C.Friedman and G. Hripcsak. Evaluating natural
language processors in the clinical domain. Methods of
Information in Medicine, 37(4/5):334-344, 1998.

Semantic Descriptor ULMS code
T191:Neoplastic Process C0025286:meningioma
T047:Disease or Syndrome C0014068:encephalomalacia

“The right frontal convexity meningioma is slightly
larger now than on the prior examination. The left
frontal meningioma is unchanged. There are three
other small enhancing nodules seen along the frontal
convexities bilaterally, as described above. There are
no new lesions seen. There is no mass effect caused by
these lesions. There is bifrontal encephalomalacia.”

Figure 10. Free-text excerpt from a radiology report.

	MAIN MENU
	PREVIOUS MENU

	Search CD-ROM
	Search Results
	Print

	01: AMIA 2003 Symposium Proceedings − Page 763
	02: AMIA 2003 Symposium Proceedings − Page 764
	03: AMIA 2003 Symposium Proceedings − Page 765
	04: AMIA 2003 Symposium Proceedings − Page 766
	05: AMIA 2003 Symposium Proceedings − Page 767

